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This study investigates response and stability characteristics of rotordynamic systems
interconnected with gear pairs and supported on oil journal bearings. The systems examined
are driven by a motor providing a known torque, which is transferred to a load element
through shafts and a gear box. Initially, the emphasis is placed on the gear-pair action, by
assuming that the interconnecting shafts are rigid. This results in low order mechanical
models with strongly non-linear characteristics, whose long-time dynamics are then
e!ectively studied by applying appropriate numerical methodologies. In this way, useful
information is obtained about the in#uence of the loading, the gear mesh and the journal
parameters on the system dynamic behaviour, including periodic, quasi-periodic and chaotic
response. E!orts are also directed towards predicting the onset of oil whirl instability and
investigating its e!ects on the system dynamics. The focus is then shifted to more realistic
models, including the #exibility of the interconnecting shafts. In this case, the order of the
system is "rst reduced by applying a component mode synthesis method, which takes
advantage of the fact that the non-linearities are located at the journal bearings and the gear
mesh only. As a result, it is possible to study the dynamics of the reduced rotor-bearing
model by employing the methodology that was developed for the gear-pair models.

( 2001 Academic Press
1. INTRODUCTION

Geared rotor-bearing systems have found extensive application as power transmission
elements in many engineering applications. The continuously rising technological needs for
improved performance, compactness, longer life and reduced production costs, require new
designs with higher operating speeds and lighter components. In order to satisfy these
needs, research in the area of geared systems has remained active, incorporating new
technical advancements and theoretical developments in other related "elds. These e!orts
are also greatly assisted by current rapid enhancements in the level of computing power,
which in turn extends the range of applicability of numerical algorithms involved. As
a result, a large number of publications have appeared in the literature, dealing with simple
gear-pair systems as well as with more involved gear trains (see references [1}9] and
references therein).

Previous studies on geared rotor-bearing systems have addressed many important
technical issues, such as the e!ect of support and gear box #exibility, gyroscopics, internal
and external damping, shaft shear deformation and gear meshing properties on their
coupled torsional-bending vibrations. The great majority of these studies assume constant
average spin speed of the gear shafts. As a consequence, the errors in the gear tooth pro"le
and spacing as well as the mass and moment unbalance act as external excitation on the
system, together with the applied torques. Both response and stability issues have been
0022-460X/01/240721#25 $35.00/0 ( 2001 Academic Press
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investigated by means of analytical, numerical and experimental techniques. Among all the
technical parameters, those related to the gear backlash and the variable gear meshing
sti!ness were found to a!ect the system response signi"cantly. As a result, their e!ects have
been re-examined in more depth and detail in some recent studies (e.g., references [6}9]).
Finally, parameters related to sti!ness and damping properties of the supporting journal
bearings were also found to play an equally important role [10].

In the simpler case of single-shaft rotordynamic systems, much progress has been
reported on the e!ect of oil journal bearings on several response and stability issues
[10}15]. For instance, in one of the most recent studies on the subject [15], the steady state
response of a single-shaft system was determined by applying an e!ective numerical
methodology, combining component mode synthesis [16, 17] and determination of periodic
solutions by the "nite di!erence and a path continuation method [18, 19]. This study
veri"ed that for some parameter combinations, a periodic motion may lose stability when
the rotor spin speed is about 2 times the lowest natural frequency of the corresponding
linearized system. As a result, a new, asynchronous motion is developed, known as oil whirl
or whip and characterized by much higher response amplitudes than the coexisting
synchronous unstable periodic motion [13].

Some studies have also appeared on dual- and multi-shaft systems supported by oil
journal bearings (e.g., references [20}26]). In particular, a study of a marine steam turbine,
with a two-stage reduction gear system, supported on journal bearings and subjected to
partial loading, reported an instability when the shaft spin speed approaches twice the
frequency value of a torsionally dominated mode [20]. In other experimental results [21], it
was concluded that the purely torsional gear models of a gas turbine-compressor train are
not accurate and that the lateral}torsional coupled modes can be signi"cantly suppressed
by oil "lm dampers. In terms of analytical work, e!ects of journal bearings on the stability
of a simple geared rotor system were examined in reference [22], while a rigid gear}rotor
pair on oil "lm bearings under moment excitation was studied in reference [23]. Moreover,
a six-degree-of-freedom gear-pair model with one shaft supported on a cavitated squeeze
"lm damper was studied in reference [24]. Periodic motions were determined by the
trigonometric collocation method for a gear mesh with constant sti!ness and damping
parameters and no backlash. Performing stability analysis also identi"ed ranges of
parameters where the periodic response loses stability and gives rise to a complex response
[25]. Finally, some numerical results were recently obtained by direct integration for
a similar gear-pair model, supported on short oil "lm bearings and engaged with gears
involving time periodic mesh sti!ness and no backlash [26].

The objective of the present work is to extend the previous research e!orts in two
principal directions. First, the emphasis is put on developing a systematic methodology for
studying dynamics of gear-pair systems supported by hydrodynamic bearings. In
the resulting models, in addition to the non-linearities introduced by the bearing action, the
gears involve backlash and the gear mesh sti!ness is expressed as a periodic function of
the driving gear rotation. Such models are useful in gaining a better understanding on the
interaction of the bearing and the gear meshing non-linearities, as well as on their in#uence
on the overall system dynamics. The second objective is to present a methodology for the
systematic and e!ective determination of the behaviour of complex geared rotor-bearing
systems, with #exible shafts. This methodology involves a crucial step, leading to
a substantial reduction of the original degrees of freedom, which in turn makes the
application of e$cient numerical methodologies feasible for predicting the system
dynamics.

The organization of this paper is as follows. In the next section, a gear-pair model is
developed, involving four lateral and two torsional degrees of freedom, coupled through the
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forces developed in the oil "lm bearings and the gear mesh. The motion is caused by a motor
unit, exerting a known external torque, which is transferred to a load unit, having a known
torque resistance form. As a result of this approach, in addition to the non-linearities due to
the bearing and the gear meshing forces, the gear static transmission error and the
unbalance forcing appear also as non-linear terms in the equations of motion. Some of these
di$culties are then overcome by adopting the classical assumption that, at steady state, the
gear shafts rotate with a constant average spin speed. This approach is presented in
section 3 and leads to a "ve-degree-of-freedom model, after proper elimination of one of the
torsional degrees of freedom. In section 4, a general methodology is presented for the
dynamic analysis of high order geared rotor-bearing models, by taking into account the
gear shaft #exibility, through the application of "nite element techniques. This method
exploits the fact that the system non-linearities are related directly to relatively few degrees
of freedom and reduces the order of the system without sacri"cing much of the
computational accuracy. Numerical results are then presented in sections 5 and 6,
illustrating the in#uence of the system parameters on its dynamic response and stability.
The "nal section includes a synopsis and the main "ndings of the study.

2. A GEAR-PAIR SYSTEM ON JOURNAL BEARINGS

The study focuses on geared rotordynamic systems, involving hydrodynamic bearings.
Figure 1 shows a simple mechanical model, retaining the essential characteristics which
arise from the interaction of the gear mesh and the bearing non-linearities. It consists of
a spur gear pair, with equivalent mass m

i
, polar moment of inertia I

i
and base radius R

i
. The

driving gear (i"1) is subjected to a known torsional moment M
1
, while the driven gear

(i"2) develops a resistance moment M
2
, with known form. Both gears are supported on

plain oil journal bearings through rigid shafts. As a consequence, the motion of the system is
Figure 1. Mechanical model of a gear-pair.
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described adequately by the following set of generalized co-ordinates
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is the so-called dynamic transmission error. The de"nition of this quantity is related to the
gear meshing action and assumes that the lateral displacements u

1
and u

2
, which are normal

to the line of action of the gear pair, have a negligible e!ect on it, when compared to the
contribution of the displacements v

1
and v

2
. In addition, this quantity includes the static

transmission error, resulting from geometrical errors in the gear teeth pro"le and spacing.
This error is a periodic function of the rigid-body rotation of the gears. Neglecting the tooth
to tooth variations, it can therefore be expressed in the Fourier series
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with fundamental period equal to u
1T

,2n/n
1
, where n

1
is the number of teeth in the

driving gear.
In general, the driving torque M

1
is a known function of time as well as of the rotation

angle u
1

and its time derivatives, while the resisting moment M
2

is a function of time,
the rotation angle u

2
and its derivatives. Likewise, the terms F

x1
, F

y1
, F

x2
and F

y2
include

the contribution of forces resulting from gravity and unbalance e!ects. Moreover, if
the damping mechanism in the gear mesh is linear, the corresponding force is expressed in
the form
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The restoring force developed at the gear meshing takes into account the variation of the
gear mesh sti!ness k

g
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In addition, the gear backlash is modelled by the piecewise linear function

f
g
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w!b, w*b,
0, Dw D(b,

w#b, w)!b,

where 2b represents the total gear backlash.
The terms f

x1
, f

y1
, f

x2
and f

y2
represent the forces developed at the journal bearings.

These forces appear in several forms, depending on the bearing dimensions (i.e., length ¸,
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diameter D"2R and radial clearance C
r
). One of the most commonly applied methods in

determining journal bearing forces is the "nite-length impedance method [10], which
determines the bearing hydrodynamic forces based on the gear centre position (u, v) and
velocity (uR , vR ), as well as on the angular speed u5 of the gear. In brief, knowledge of these
parameters initially permits the evaluation of the gear centre eccentricity ratio e and
inclination angle b, de"ned by

e"Ju2#v2/C
r
, cosb"u/eC

r
, sinb"v/eC

r

(for a complete geometrical and physical interpretation of these and the following journal
bearing quantities see reference [10]). By direct di!erentiation, these quantities yield the
corresponding time derivatives eR and bQ , which then allows the evaluation of the journal's
pure-squeeze-speed

<
s
"C

r
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Moreover, this leads to a direct calculation of the parameters
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These values are, in turn, useful in determining an angle c through the expression
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Eventually, the journal bearing force is determined in the form
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where k represents the oil viscosity coe$cient and the components of the impedance vector
W in the xy co-ordinate system are given by

=
x
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y
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with /"a!c#g.
Using the de"nition of the displacement vector u (t), the original set of equations (1)}(6)

can be written in the compact form
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The quantities v(q), w (r) and wL result after dividing u (t), u(t) and w, respectively, by the
characteristic length x

c
.

3. AN ALTERNATIVE GEAR-PAIR MODEL

In more classical formulations, it is usually assumed that the gear rotation can be
decomposed in the form

u
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In this way, the rigid-body rotation of the system is eliminated from the equations of
motion. In addition, making use of the last result, equations (2) and (5) may be replaced by
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respectively. Consequently, the new set of equations of motion can eventually be written in
the form
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The dynamical model represented by equation (18) is fundamentally di!erent from model
(12), in several respects. First, model (12) determines the gear shaft rotation angles
completely, given the applied external moments, while in model (18) the mean angular speed
of the gear shafts is pre-speci"ed. Moreover, the gear static transmission error and the
unbalance forces act as non-linear terms in equation (12) but as periodic forcing terms in
equation (18). As a consequence, in the special cases where the gear backlash and the
bearing non-linearities are not essential, system (18) becomes linear, since the gear meshing
force is expressed in the simple form
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instead of equation (9), while the forces developed in each bearing are represented by the
classical eight-coe$cient element [10, 12] with
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instead of the non-linear form represented by equation (11). In such cases, the elements of
the sti!ness and damping matrices in equation (20) are evaluated by applying standard
procedures [10], after determining the corresponding equilibrium position by taking into
account the weight, the torque and the tooth loads applied on the gears.

4. GEARED ROTOR-BEARING SYSTEMS

In typical rotordynamic systems, gear pairs are only one of several components of the
whole system. For instance, Figure 2 presents such a system, which includes a motor
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providing the power necessary for the function of the system, a gear-pair system as part of
a gear box reducing the rotor spin speed and a load subsystem (fan, pump, propeller,
generator, etc.). Here, the gear box is connected to the motor and the load subsystems
through #exible shafts.

The model shown in Figure 2 is more realistic than the gear-pair system of Figure 1. On
the other hand, it is also more complicated and more di$cult to analyze. In fact, the order of
the resulting dynamic model is so high that even the application of numerical analysis
methodologies is impractical. However, there is an attractive feature of the system, which
can be exploited in order to perform a systematic investigation of its dynamics; namely, the
important non-linearities of the system appear in the gear mesh and the hydrodynamic
bearing locations only. This localization of the non-linearities is quite common in practice
and as a result, several appropriate methodologies have already appeared in the literature
for such systems [15}17, 27}29]. The approach chosen in the present study for the e$cient
analysis of the system shown in Figure 2 is based on such methodologies and especially on
that presented in reference [27]. The basic steps of this methodology are explained brie#y in
the remaining part of this section.

First, the system shown in Figure 2 is divided into three main components, including the
driving motor and shaft (component A), the gear pair and journal bearings subsystem
(component B) and the driven subsystem with its shaft (component C). Components A and
C are linear and their equations of motion are obtained by applying classical "nite element
methodologies in the general form
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include contributions from
"ve-degree-of-freedom per node (four for the bending and one for the torsional action). Due
to the linearity of the components, their matrices assume special forms. For instance, after
appropriate partitioning of the displacement vector, the sti!ness matrix K<
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where the submatrices K<
Ax

, K<
Ay

and K<
Az

include the contribution from the bending action in
the xz plane, the bending action in the yz plane and the torsional action of the driving shaft
respectively.

In the above context, component B is considered as a super-element whose dynamics are
governed by equations of motion similar to those presented for the gear-pair model in
the previous sections. Clearly, the force developed in the gear mesh causes a coupling of the
bending action in the yz planes of components A and C as well as of the torsional action in
both shafts. In addition, the journal bearing of the driving shaft couples the bending action
in the xz and yz planes of component A, while the journal bearing of the driven shaft causes
a coupling of the bending action in the xz and yz planes of component C. Moreover, the
overall coupling in the components of the total displacement vector.
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of the composite system is enhanced further when gyroscopic e!ects are taken into account.
For a su$ciently accurate modelling of the overall system, the number of degrees of

freedom in vector u(t) becomes excessively high. However, the number of degrees of freedom
of components A and C can be reduced substantially, without sacri"cing much accuracy, by
applying a component mode synthesis methodology [16]. Through a co-ordinate
transformation with the form
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the original set of equations (21a) of component A can be replaced by a considerably smaller
set of equations, expressed in terms of the new generalized co-ordinates q

A
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modes of the component (see reference [16] for details). Then, application of transformation
(22) to the original set of equations (21a) yields the smaller set
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The elements of the damping matrix C
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of the structural component may be selected in
a way that preserves the normal modes of the corresponding undamped system [16].

The number of residual #exibility modes included in matrix W
A

is equal to the number of
boundary degrees of freedom of component A. In the case examined, these degrees of
freedom, say q

AB
, are those associated with the action of the journal bearing and the gear on

the driving shaft. Consequently, the original vector of unknowns of component A is
partitioned in the form
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Analogous co-ordinate partitioning and treatment of equation (21b) leads to a similar set of
equations of motion for component C. Therefore, in the "nal stage of the reduction
processes, the equations of motion of the composite system are derived and written in the
form
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This synthesis step is accomplished by considering the kinetic energy, the potential
energy and the virtual work of the system as a sum of the contribution from all components
on these quantities [16]. For instance, for the total potential energy of the system it is true
that
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Taking into account the displacement partitions (24), (26) and performing the necessary
algebraic manipulations eventually yields the sti!ness matrix K of the composite system. In
a similar fashion, consideration of the kinetic energy and the dissipation energy yields the
mass matrix M and the damping matrix C respectively. Finally, the determination of vector
f (t, q, q5 ), including the external forcing, the gear meshing force and the journal
non-linearities, is most conveniently performed by evaluating the virtual work of the
composite system in the form
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5. PARAMETRIC STUDY

The equations of motion of the gear pair and the rotordynamic models examined in the
previous sections involve strong non-linearities, resulting from several sources. As a result, it
not feasible to determine their response by means of analytical methodologies. In the
general case, the dynamic response of these models can be determined by direct integration,
starting from a known set of initial conditions. However, for some typical loading
conditions, such as those corresponding to a constant driving moment M

10
and a resisting

moment with form

MK
2

(tQ
2
)"

M
2
(uR

2
)

k
0
x
c
R

2

"M
20
#atQ 2

2
, (27)

the system response is expected to eventually become periodic. For such cases, suitable
numerical methodologies exist which can determine complete branches of periodic motions,
together with their stability and bifurcation properties, in a direct way.

In the numerical calculations, the two journal bearings supporting the gears are identical,
with length ¸"17)145 mm, diameter D"35)56 mm, oil viscosity coe$cient
k"68)95]10~4 N s/m2 and radial clearance C

r
"76)2 km. Here, the bearing radial

clearance is chosen as the characteristic length x
c
of the system. Moreover, in the nominal

case the basic system parameters take the following values:

M
20
"0)0185, a"0, f

g
"

c
g

2 Jmk
0

"0)05 and b
g
"

b

C
r

"1)312.

In addition, both the gear meshing sti!ness and the static transmission error are assumed to
be periodic, with forms similar to those presented in reference [6]. However, the amplitude
of the static transmission error is adjusted so that eL

c1
"0)05. Also, when aO0, the

numerical results are obtained by "rst selecting an appropriate range of values for
the driving moment M

10
. For these cases, it turns out that in the steady state

M
10

"M
20
#aX2

2
,



Figure 3. E!ect of the spin speed dependent component of the resisting moment on steady state motions.
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where X
2

is the average spin speed of the driven shaft, normalized by u
0
. In addition, the

normalized frequency of the located periodic motions coincides with the corresponding gear
meshing frequency X

M
"u

M
/u

0
. This makes it possible to present branches of periodic

motions in the form of classical frequency-response diagrams. In these diagrams, the results
are presented as a function of the normalized average spin speed X

1
of the driven shaft. Also,

branches of stable/unstable periodic solutions are represented by solid/dashed curves
respectively.

The "rst set of numerical results refers to gear-pair systems. In particular, Figure 3
presents response diagrams for the normalized displacements ;

1
"u

1
/C

r
and <

1
"v

1
/C

r



Figure 4. E!ect of resisting moment amplitude on periodic motions: (a) M
20
"5)291]10~3; (b)

M
20
"1)0582]10~2; (c) M

20
"0)0185 and (d) M

20
"0)026455.
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of the driving gear centre for di!erent values of the parameter a in equation (27). These
results were obtained by employing the six-degree-of-freedom gear-pair model presented in
section 2. As X

1
tends to zero, the displacement;

1
also tends to zero, corresponding to the

stationary position of the gear centre. Also, in the limit aP0, the results are found to
virtually coincide with those obtained from the gear-pair model developed in section 3.
Since the solution branches present qualitatively similar characteristics for that model, too,
the e!ects of the other system parameters were next investigated by employing the
"ve-degree-of-freedom model, with a"0.

The response diagrams of Figure 4 demonstrate the e!ect of the external torque
amplitude on the vibration of the gear-pair model expressed by equation (18). In particular,
the results for the nominal case are shown in Figure 4(c). For this case, the "rst branch of
unstable periodic motions, obtained by increasing X

1
from zero, appears through

saddle-node bifurcations and coexists with two other branches of stable motions. The
second branch of unstable periodic motions is generated with #ip bifurcations and coexists
with a branch of stable n"2 subharmonic motions. Finally, the third branch of unstable
periodic motions arises via a Hopf bifurcation.
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An increase in the amplitude of the external moment causes an elimination of the
branches of unstable motions arising via saddle-node and #ip bifurcations (Figure 4(d)).
Moreover, the spin speed value where the Hopf bifurcation occurs is moved to higher levels.
On the other hand, a decrease in the torque loads results in more interesting dynamics.
Initially, the branch of stable periodic motions included between the right #ip and Hopf
bifurcation values decreases in size and eventually disappears (Figure 4(b)). However,
a further decrease in M

20
makes this branch reappear (Figure 4(a)). At the same time, the

Hopf bifurcation spin speed value starts increasing again, while multiple branches of
subharmonic motions arise via #ip bifurcations in the low-frequency range. Finally, another
noticeable qualitative change in the response diagrams occurs at about M

20
"0)0163,

where the static force component induced by the external moment on the driving gear is
equilibrated by its weight.

In order to enhance the understanding provided by the above "ndings, Figure 5 presents
information for the linearized gear pair model corresponding to the nominal case. More
speci"cally, Figure 5(a) presents the undamped natural frequencies, while Figure 5(b)
depicts the associated damping ratios, as a function of X

1
. First, Figure 5(b) shows that the

damping ratio of the lowest natural frequency becomes negative at about X
1
"0)195,

signalling the onset of instability for the linearized model. On the other hand, this is exactly
the value where the X"X

1
/2 (broken) line crosses the curve of the lowest natural frequency

in Figure 5(a). For comparison purposes, it is noted that the Hopf bifurcation value for the
nominal non-linear case was detected at X

1
"0)198. Similar results were also observed for

other parameter combinations. These results showed that the natural frequencies and
damping ratios are a!ected signi"cantly by the amplitude of the external torques. On the
other hand, changes in the gear meshing sti!ness and damping coe$cients were found to
a!ect only the frequency u

v
in a noticeable way.

Besides the applied torques, the systems examined may also be excited by static
transmission errors and unbalances. Figure 6(a) presents results obtained by including
a mass unbalance of e"10 km in the driving gear (curve 1), together with results obtained
for a case with no unbalance and a static transmission error with amplitude 3 times smaller
than the nominal (curve 2). Obviously, a reduction in the loading caused by static
transmission errors and unbalances attenuates the e!ect of the non-linearities.
Furthermore, when both the unbalance and the static transmission error are negligible, the
response diagram takes the form shown in Figure 6(b). Here, the absence of external loading
allows constant solutions of the equations of motion to appear represented by the thinner
lines. Also, the branch of unstable periodic motions emanates from them at a subcritical
Hopf bifurcation point. These periodic solutions involve a hysteresis, they become stable via
a saddle-node bifurcation and their amplitude becomes relatively large (in fact, it quickly
approaches the bearing radial clearance), in accordance with experimental observations
[13, 20].

To gain a deeper insight into the gear-pair dynamics, Figure 7(a) depicts the lower
undamped natural frequencies of the linearized system corresponding to Figure 6(b), as
a function of X

1
. Moreover, the broken and dashed curves represent similar quantities of the

driving and driven gear systems, respectively, when they are decoupled from each other (i.e.,
for k

g
"0"c

g
). Finally, the thicker curve indicates the frequency of the branch of periodic

motions. At the Hopf bifurcation point, this frequency is almost half the value of the driving
shaft spin speed. It then becomes smaller, but in a slower fashion than that observed in
similar but single-shaft systems [15]. These results, in conjunction with those presented
in Figure 5, indicate that the onset of instability of the geared system examined occurs at
a spin speed X

1
, which is about twice the lowest natural frequency of the linearized model.

This is in agreement with similar observations for single-shaft systems on journal bearings



Figure 5. Eigenvalues of linearized nominal model as a function of spin speed: (a) undamped natural
frequencies and (b) damping ratios.
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[13, 15]. However, in some other cases, this instability is not necessarily related directly to
the lowest natural frequency of the system, as shown in Figure 7(b).

The following sequence of diagrams illustrates di!erences observed in the response by
considering more deviations from the nominal case. First, Figure 8(a) presents results
obtained for the linearlized nominal model (curve 1) or by using short instead of "nite



Figure 6. E!ect of loading parameters: (a) system with an unbalance of e"10 km (curve 1) and system with
static transmission error (curve 2) and (b) system with no unbalance and static transmission error.

ROTORDYNAMIC SYSTEMS WITH OIL BEARINGS 735
bearing theory (curve 2). In the "rst case, the most important di!erences are recorded in the
low-frequency range, where both primary and subharmonic resonances are captured in
Figure 4(c). In contrast, the results from the short bearing theory deviate from those of the
"nite bearing theory throughout the frequency range examined, since the ratio ¸/D of the
bearings is 0)48, which lies within the validity limit of short bearing theory [10].



Figure 7. Undamped natural frequencies for: (a) R
2
"2R

1
(nominal case); (b) R

2
"5R

1
.
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Likewise, the e!ect of the oil viscosity coe$cient of the journal bearings is illustrated in
Figure 8(b). Among other things, a decrease in the value of this parameter, caused by
a temperature rise, leads to an increase in the critical spin speed, which is in accordance with
earlier experimental observations [20]. On the other hand, the e!ect of decreasing the value
of the gear meshing damping ratio has more important implications in the low-frequency
range, as shown in Figure 8(c). Finally, the e!ect of the gear backlash is also more



Figure 8. Frequency}response diagram obtained for: (a) the linearized model (curve 1) and by application of
short bearing theory (curve 2); (b) oil viscosity coe$cient k"30]10~4 N s/m2 (curve 1) and 110]10~4 Ns/m2
(curve 2); (c) gear mesh damping f

g
"0)005 and (d) zero gear backlash.
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pronounced in the low-frequency regime. This is demonstrated in Figure 8(d), which was
obtained by neglecting the gear backlash (i.e., for b

g
"0).

Application of the present methodology leads to direct evaluation of the loads induced on
the gear teeth during operation. Figure 9(a) presents the maximum value of the force
developed at the gear mesh, expressed in the form of equation (9) and normalized by the
static value M

10
/R

1
, as a function of X

1
, for the nominal case. Likewise, the results of

Figure 9(b) were obtained after assuming that the gear meshing damping becomes zero
(instead of remaining constant) when the gear teeth lose contact (i.e., when Dw D(b). The
main di!erences between these two cases are observed in the vicinity of the lowest and
the middle unstable regimes. However, in both cases there is a great deviation from the
corresponding static value of one. This illustrates the large errors involved in models that
adopt the common &&side load'' approach. This conclusion is reinforced further by inspecting
the complicated time histories obtained over a response period, shown in the insets at
selected spin speeds. The fact that the meshing force may be much larger than the
corresponding static value has signi"cant practical implications, related to the fatigue
strength of the gear teeth.



Figure 9. Amplitude of force developed at the gear mesh for: (a) linear mesh damping and (b) non-linear mesh
damping.
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In the "nal part of this section, some characteristic numerical results are presented for
a typical rotordynamic system with #exible shafts. Here, the emphasis is placed on
demonstrating the validity and e!ectiveness of the methodology described in section 4,
rather than on obtaining another exhaustive set of numerical results. The system shown in



TABLE 1

Natural frequencies of linearized model at X
1
"0)207

Complete Reduced
model model

0 0
0)084 0)084
0)151 0)151
0)161 0)161
0)175 0.175
0)422 0)422
0)426 0)426
0)459 0)459
0)557 0)556
0)911 0)911
0)941 0)941
0)995 0)995
1)076 1)076
1)260 1)261
3)017 3)031
3)027 3)116
3)158 4)174
3)892 5)122
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Figure 2 is examined and its shafts are modelled by beam "nite elements. In the reduction
stage, component A was represented by three rigid-body modes, "ve free interface #exible
modes and "ve boundary degrees of freedom, while component C was represented by an
identical number of modes. As a result, the reduced system consisted of 26 degrees of
freedom.

The accuracy of the component mode synthesis method is "rst veri"ed by the results of
Table 1, presenting the lower natural frequencies of the reduced and complete linearlized
nominal system, at a speci"c spin speed. Direct comparison shows that the di!erences
between the "rst 14 frequencies of the complete and the reduced model are negligible. This
level of accuracy is controlled by the number of #exible modes included in the reduced
model and is maintained throughout the frequency range of interest. These "ndings are
further reinforced by the response diagrams of Figure 10. In particular, Figure 10(a) shows
the overall lateral displacement of the driving gear centre, while Figure 10(b) presents its
deviation from the corresponding static value. Again, the results obtained for the reduced
system (curve 1) are virtually identical and cannot be distinguished from the results
obtained for the corresponding complete model (curve 2), within the frequency range of
interest. Finally, curve 3 presents a similar diagram, obtained after including the gyroscopic
e!ects associated with the motor, load and gear elements.

6. DIRECT INTEGRATION OF THE EQUATIONS OF MOTION

In the great majority of the response diagrams presented in the previous section
frequency ranges exist where no stable steady state motion is captured. For instance, two
such frequency intervals appear in Figure 8(c). In order to develop a more complete picture
for the system response, the dynamics in these ranges are next investigated further, by direct
integration of the equations of motion (18).



Figure 10. Response diagrams for a geared rotor-bearing system (curve 1: reduced model, curve 2: complete
model and curve 3: model including gyroscopics): (a) comparison of overall lateral displacement at the driving gear
and (b) comparison of dynamic component of lateral displacement.
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First, the dynamics within the low-frequency range shown in the inset of Figure 8(c), are
dominated by a sequence of period-doubling bifurcations. As a consequence, the orbits of
the driving gear appear in the form shown in Figure 11, for several values of the spin speed
X

1
. As usual, following a "nite number of observable period doublings, the system settles



Figure 11. Orbits of the driving gear centre in the vicinity of the #ip bifurcations: (a) X"0)08; (b) 0)1; (c) 0)1053;
(d) 0)1093; (e) 0)1096 and (f) 0)11.
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eventually into a chaotic response [19]. The trajectories obtained may occasionally appear
in a rather complicated form. However, throughout the frequency interval of interest, the
displacement amplitudes were found to remain close to those of the coexisting unstable
periodic motion.



Figure 12. Orbits of the driving gear centre in the vicinity of the Hopf bifurcation: (a) X"0)19 and 0)1963; (b)
X"0)1966 and 0)2.
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A quite di!erent response scenario was observed in the high-frequency unstable regime of
Figure 8(c). Following the Hopf bifurcation, the original periodic motion is initially
replaced by a quasi-periodic motion with comparable displacement amplitudes
(Figure 12(a)), as usual [19]. However, this motion is very quickly replaced by motions with
much higher response amplitudes (Figure 12(b)). In fact, these new motions were found to
persist throughout the high-frequency interval and have amplitudes close to the bearing
radial clearance. This transition presents many similarities with the amplitude changes
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observed in Figure 6(b), when the unforced system undergoes a rapid transition from
constant to high amplitude periodic motions. Moreover, it also appears to follow the
pattern of similar instabilities observed in single-shaft systems with journal bearings
[13, 15].

The results from direct integration, in conjunction with the results presented in the
previous section, shed light on and help in explaining some earlier experimental
observations [20]. For instance, the response diagrams of Figure 4 illustrate the strong
in#uence of the external loading on the response amplitudes and stability. Therefore,
depending on the loading level, the same system may exhibit quite di!erent behaviour as the
spin speed of its shafts is increased gradually. More speci"cally, for relatively large loading
the system will exhibit large-amplitude motions, characterized as oil whirl and then oil whip
instability, only immediately after the Hopf bifurcation value. However, for lower loading
levels, the same system may "rst pass through spin speed intervals where subharmonic
motions occur, like the single-shaft systems [13]. These motions belong to n"2 branches,
mainly, but they can evolve to become even chaotic. However, their amplitude is always
comparable with the amplitude of the coexisting but unstable n"1 motion. This is exactly
what distinguishes these motions from those occurring after the Hopf bifurcation.

7. SYNOPSIS AND CONCLUSIONS

A systematic methodology has been developed for determining the dynamic behaviour of
geared rotordynamic systems supported on oil journal bearings. Initially, models of simple
gear-pair systems were set-up, including e!ects from gear mesh backlash and damping,
static transmission error, unbalances and external torques. In particular, the gear meshing
sti!ness and the static transmission error were modelled as periodic functions of the gear
rotation. The resulting equations of motion include strong non-linearities, arising from the
gear meshing and the journal action. This makes the application of analytical methods
unfeasible and as a consequence, an e!ective numerical methodology was developed for
obtaining their steady state response and stability properties. Then, systems with #exible
shafts were also considered. The shafts were modelled with "nite elements, while the
gear-pair was included as a super-element. By application of a component mode synthesis
method, the system order can be reduced to sizes that can be treated by the methodology
applied to the gear-pair models.

In the last part of the study, numerical results were presented, providing a better
understanding of the dynamics related to the interaction of the gear meshing and the oil
journal non-linearities. This was achieved through sequences of response diagrams, which
in conjunction with results from direct integration of the equations of motion, revealed the
e!ect of the system parameters on its response and stability properties. More speci"cally,
from the response diagrams it was "rst noticed that the systems examined may possess
several branches of unstable periodic response, generated through #ip or Hopf bifurcations.
The former occur at relatively low spin speeds and may lead to quasi-periodic or chaotic
response with amplitudes comparable to those of the coexisting unstable periodic motion.
In contrast, the Hopf bifurcation appears at higher spin speeds and leads to motions with
substantially greater amplitudes. These phenomena present many similarities as well as
some di!erences compared with phenomena observed for single-shaft systems on journal
bearings.

Among all the parameters, the magnitude of the external torques was found to play
a dominant role in the system dynamics. For instance, an increase in these torques caused
elimination of the period-doubling bifurcations and moved the Hopf bifurcation to higher
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speeds. On the other hand, a reduction of the external torques led to more interesting
dynamics. In particular, the onset of the Hopf instability for systems with negligible static
transmission error and unbalance was found to occur at a spin speed which is about twice
that of the lowest natural frequencies of the corresponding linearized model. However,
the frequency of the resulting periodic motion was smaller but remained close to half the
value of the spin speed, in all cases examined. Finally, the e!ect of other parameters, like the
gear meshing damping, backlash and oil viscosity, was also investigated. In addition, apart
from predicting displacement amplitudes and capturing orbits at selected points, the force
developed at the gear mesh was also evaluated and it was veri"ed that its amplitude may be
much larger than the corresponding static value.
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